2016-03-01 19 views
6

Ho una vaga idea di cosa siano le meta-classi. Sono le classi su cui sono basati gli oggetti di classe (poiché le classi sono oggetti in Python). Ma qualcuno potrebbe spiegare (con il codice) come si fa a crearne uno.Come si crea un metaclasse?

+0

Per uno sguardo approfondito al * perché * dei metaclassi, vedere [questa risposta] (http://stackoverflow.com/a/6581949/208880). –

+0

@PeterMortensen: No. Questa domanda sta cercando una risorsa fuori sito. –

risposta

4

Ci sono (a questo punto) due metodi chiave in una metaclasse:

  • __prepare__ e
  • __new__

__prepare__ consente di fornire una mappatura personalizzata (ad esempio una OrderedDict) da utilizzare come spazio dei nomi durante la creazione della classe. Devi restituire un'istanza di qualsiasi spazio dei nomi che scegli. Se non si implementa __prepare__ viene utilizzato un normale dict.

__new__ è responsabile della creazione/modifica effettiva della classe finale. metaclasse

A scarno, do-nothing-extra sarebbe simile:

class Meta(type): 

    def __prepare__(metaclass, cls, bases): 
     return dict() 

    def __new__(metacls, cls, bases, clsdict): 
     return super().__new__(metacls, cls, bases, clsdict) 

Un semplice esempio:

dici che vuoi un po 'di codice di validazione semplice per funzionare sul vostro attributi - come è deve sempre essere un int o un str. Senza una metaclasse, la classe sarebbe simile:

class Person: 
    weight = ValidateType('weight', int) 
    age = ValidateType('age', int) 
    name = ValidateType('name', str) 

Come si può vedere, è necessario ripetere il nome dell'attributo due volte. Ciò rende possibili errori di battitura insieme a bug irritanti.

Un semplice metaclasse può affrontare questo problema:

class Person(metaclass=Validator): 
    weight = ValidateType(int) 
    age = ValidateType(int) 
    name = ValidateType(str) 

Questo è ciò che la metaclasse sarebbe simile (se non utilizzano __prepare__ poiché non è necessario):

class Validator(type): 
    def __new__(metacls, cls, bases, clsdict): 
     # search clsdict looking for ValidateType descriptors 
     for name, attr in clsdict.items(): 
      if isinstance(attr, ValidateType): 
       attr.name = name 
       attr.attr = '_' + name 
     # create final class and return it 
     return super().__new__(metacls, cls, bases, clsdict) 

Un campione serie di:

p = Person() 
p.weight = 9 
print(p.weight) 
p.weight = '9' 

produce:

9 
Traceback (most recent call last): 
    File "simple_meta.py", line 36, in <module> 
    p.weight = '9' 
    File "simple_meta.py", line 24, in __set__ 
    (self.name, self.type, value)) 
TypeError: weight must be of type(s) <class 'int'> (got '9') 

Note

questo esempio è abbastanza semplice che avrebbe potuto essere anche realizzata con un decoratore di classe, ma presumibilmente un metaclasse reale avrebbe fatto molto di più.

In Python 2.x, il metodo __prepare__ non esiste, e la classe speficies sua metaclasse includendo una variabile di classe __metaclass__ = ..., in questo modo:

class Person(object): 
    __metaclass__ = ValidateType 

La classe 'ValidateType' per riferimento:

class ValidateType: 
    def __init__(self, type): 
     self.name = None # will be set by metaclass 
     self.attr = None # will be set by metaclass 
     self.type = type 
    def __get__(self, inst, cls): 
     if inst is None: 
      return self 
     else: 
      return inst.__dict__[self.attr] 
    def __set__(self, inst, value): 
     if not isinstance(value, self.type): 
      raise TypeError('%s must be of type(s) %s (got %r)' % 
        (self.name, self.type, value)) 
     else: 
      inst.__dict__[self.attr] = value 
0

I' Ho appena scritto un esempio completamente commentato di un metaclass. È in Python 2.7. Lo sto condividendo qui e spero che possa aiutarti a capire di più sui metodi __new__, __init__, __call__, __dict__ e sul concetto di bounded/unbounded in Python, nonché sull'uso di metaclassi.

Il problema con un metaclasse, mi sento, è che ha troppi posti dove si può fare le stesse cose, o simili ma con alcune lievi differenze . Quindi i miei commenti e test cases enfatizzano principalmente dove scrivere cosa, cosa va dove in alcuni punti e cosa sono accessibili a in un determinato oggetto.

L'esempio tenta di creare una factory di classe mantenendo le definizioni di classi ben formate.

from pprint import pprint 
from types import DictType 

class FactoryMeta(type): 
    """ Factory Metaclass """ 

    # @ Anything "static" (bounded to the classes rather than the instances) 
    # goes in here. Or use "@classmethod" decorator to bound it to meta. 
    # @ Note that these members won't be visible to instances, you have to 
    # manually add them to the instances in metaclass' __call__ if you wish 
    # to access them through a instance directly (see below). 
    extra = "default extra" 
    count = 0 

    def clsVar(cls): 
     print "Class member 'var': " + str(cls.var) 

    @classmethod 
    def metaVar(meta): 
     print "Metaclass member 'var': " + str(meta.var) 

    def __new__(meta, name, bases, dict): 
     # @ Metaclass' __new__ serves as a bi-functional slot capable for 
     # initiating the classes as well as alternating the meta. 
     # @ Suggestion is putting majority of the class initialization code 
     # in __init__, as you can directly reference to cls there; saving 
     # here for anything you want to dynamically added to the meta (such 
     # as shared variables or lazily GC'd temps). 
     # @ Any changes here to dict will be visible to the new class and their 
     # future instances, but won't affect the metaclass. While changes 
     # directly through meta will be visible to all (unless you override 
     # it later). 
     dict['new_elem'] = "effective" 
     meta.var = "Change made to %s by metaclass' __new__" % str(meta) 
     meta.count += 1 
     print "================================================================" 
     print " Metaclass's __new__ (creates class objects)" 
     print "----------------------------------------------------------------" 
     print "Bounded to object: " + str(meta) 
     print "Bounded object's __dict__: " 
     pprint(DictType(meta.__dict__), depth = 1) 
     print "----------------------------------------------------------------" 
     print "Parameter 'name': " + str(name) 
     print "Parameter 'bases': " + str(bases) 
     print "Parameter 'dict': " 
     pprint(dict, depth = 1) 
     print "\n" 
     return super(FactoryMeta, meta).__new__(meta, name, bases, dict) 

    def __init__(cls, name, bases, dict): 
     # @ Metaclass' __init__ is the standard slot for class initialization. 
     # Classes' common variables should mainly goes in here. 
     # @ Any changes here to dict won't actually affect anything. While 
     # changes directly through cls will be visible to the created class 
     # and its future instances. Metaclass remains untouched. 
     dict['init_elem'] = "defective" 
     cls.var = "Change made to %s by metaclass' __init__" % str(cls) 
     print "================================================================" 
     print " Metaclass's __init__ (initiates class objects)" 
     print "----------------------------------------------------------------" 
     print "Bounded to object: " + str(cls) 
     print "Bounded object's __dict__: " 
     pprint(DictType(cls.__dict__), depth = 1) 
     print "----------------------------------------------------------------" 
     print "Parameter 'name': " + str(name) 
     print "Parameter 'bases': " + str(bases) 
     print "Parameter 'dict': " 
     pprint(dict, depth = 1) 
     print "\n" 
     return super(FactoryMeta, cls).__init__(name, bases, dict) 

    def __call__(cls, *args): 
     # @ Metaclass' __call__ gets called when a class name is used as a 
     # callable function to create an instance. It is called before the 
     # class' __new__. 
     # @ Instance's initialization code can be put in here, although it 
     # is bounded to "cls" rather than instance's "self". This provides 
     # a slot similar to the class' __new__, where cls' members can be 
     # altered and get copied to the instances. 
     # @ Any changes here through cls will be visible to the class and its 
     # instances. Metaclass remains unchanged. 
     cls.var = "Change made to %s by metaclass' __call__" % str(cls) 
     # @ "Static" methods defined in the meta which cannot be seen through 
     # instances by default can be manually assigned with an access point 
     # here. This is a way to create shared methods between different 
     # instances of the same metaclass. 
     cls.metaVar = FactoryMeta.metaVar 
     print "================================================================" 
     print " Metaclass's __call__ (initiates instance objects)" 
     print "----------------------------------------------------------------" 
     print "Bounded to object: " + str(cls) 
     print "Bounded object's __dict__: " 
     pprint(DictType(cls.__dict__), depth = 1) 
     print "\n" 
     return super(FactoryMeta, cls).__call__(*args) 

class Factory(object): 
    """ Factory Class """ 

    # @ Anything declared here goes into the "dict" argument in the metaclass' 
    # __new__ and __init__ methods. This provides a chance to pre-set the 
    # member variables desired by the two methods, before they get run. 
    # @ This also overrides the default values declared in the meta. 
    __metaclass__ = FactoryMeta 
    extra = "overridng extra" 

    def selfVar(self): 
     print "Instance member 'var': " + str(self.var) 

    @classmethod 
    def classFactory(cls, name, bases, dict): 
     # @ With a factory method embedded, the Factory class can act like a 
     # "class incubator" for generating other new classes. 
     # @ The dict parameter here will later be passed to the metaclass' 
     # __new__ and __init__, so it is the right place for setting up 
     # member variables desired by these two methods. 
     dict['class_id'] = cls.__metaclass__.count # An ID starts from 0. 
     # @ Note that this dict is for the *factory product classes*. Using 
     # metaclass as callable is another way of writing class definition, 
     # with the flexibility of employing dynamically generated members 
     # in this dict. 
     # @ Class' member methods can be added dynamically by using the exec 
     # keyword on dict. 
     exec(cls.extra, dict) 
     exec(dict['another_func'], dict) 
     return cls.__metaclass__(name + ("_%02d" % dict['class_id']), bases, dict) 

    def __new__(cls, function): 
     # @ Class' __new__ "creates" the instances. 
     # @ This won't affect the metaclass. But it does alter the class' member 
     # as it is bounded to cls. 
     cls.extra = function 
     print "================================================================" 
     print " Class' __new__ (\"creates\" instance objects)" 
     print "----------------------------------------------------------------" 
     print "Bounded to object: " + str(cls) 
     print "Bounded object's __dict__: " 
     pprint(DictType(cls.__dict__), depth = 1) 
     print "----------------------------------------------------------------" 
     print "Parameter 'function': \n" + str(function) 
     print "\n" 
     return super(Factory, cls).__new__(cls) 

    def __init__(self, function, *args, **kwargs): 
     # @ Class' __init__ initializes the instances. 
     # @ Changes through self here (normally) won't affect the class or the 
     # metaclass; they are only visible locally to the instances. 
     # @ However, here you have another chance to make "static" things 
     # visible to the instances, "locally". 
     self.classFactory = self.__class__.classFactory 
     print "================================================================" 
     print " Class' __init__ (initiates instance objects)" 
     print "----------------------------------------------------------------" 
     print "Bounded to object: " + str(self) 
     print "Bounded object's __dict__: " 
     pprint(DictType(self.__dict__), depth = 1) 
     print "----------------------------------------------------------------" 
     print "Parameter 'function': \n" + str(function) 
     print "\n" 
     return super(Factory, self).__init__(*args, **kwargs) 
# @ The metaclass' __new__ and __init__ will be run at this point, where the 
# (manual) class definition hitting its end. 
# @ Note that if you have already defined everything well in a metaclass, the 
# class definition can go dummy with simply a class name and a "pass". 
# @ Moreover, if you use class factories extensively, your only use of a 
# manually defined class would be to define the incubator class. 

L'output è simile a questo (adattato per dimostrazione migliore):

================================================================ 
Metaclass's __new__ (creates class objects) 
---------------------------------------------------------------- 
Bounded to object: <class '__main__.FactoryMeta'> 
Bounded object's __dict__: 
{ ..., 
'clsVar': <function clsVar at 0x00000000029BC828>, 
'count': 1, 
'extra': 'default extra', 
'metaVar': <classmethod object at 0x00000000029B4B28>, 
'var': "Change made to <class '__main__.FactoryMeta'> by metaclass' __new__"} 
---------------------------------------------------------------- 
Parameter 'name': Factory 
Parameter 'bases': (<type 'object'>,) 
Parameter 'dict': 
{ ..., 
'classFactory': <classmethod object at 0x00000000029B4DC8>, 
'extra': 'overridng extra', 
'new_elem': 'effective', 
'selfVar': <function selfVar at 0x00000000029BC6D8>} 

================================================================ 
Metaclass's __init__ (initiates class objects) 
---------------------------------------------------------------- 
Bounded to object: <class '__main__.Factory'> 
Bounded object's __dict__: 
{ ..., 
'classFactory': <classmethod object at 0x00000000029B4DC8>, 
'extra': 'overridng extra', 
'new_elem': 'effective', 
'selfVar': <function selfVar at 0x00000000029BC6D8>, 
'var': "Change made to <class '__main__.Factory'> by metaclass' __init__"} 
---------------------------------------------------------------- 
Parameter 'name': Factory 
Parameter 'bases': (<type 'object'>,) 
Parameter 'dict': 
{ ..., 
'classFactory': <classmethod object at 0x00000000029B4DC8>, 
'extra': 'overridng extra', 
'init_elem': 'defective', 
'new_elem': 'effective', 
'selfVar': <function selfVar at 0x00000000029BC6D8>} 

La sequenza di chiamata è metaclasse __new__ quindi il suo __init__. __call__ non verrà chiamato in questo momento.

E se creiamo un'istanza,

func1 = (
    "def printElems(self):\n" 
    " print \"Member new_elem: \" + self.new_elem\n" 
    " print \"Member init_elem: \" + self.init_elem\n" 
    ) 
factory = Factory(func1) 

L'output è:

================================================================ 
Metaclass's __call__ (initiates instance objects) 
---------------------------------------------------------------- 
Bounded to object: <class '__main__.Factory'> 
Bounded object's __dict__: 
{ ..., 
'classFactory': <classmethod object at 0x00000000029B4DC8>, 
'extra': 'overridng extra', 
'metaVar': <bound method type.metaVar of <class '__main__.FactoryMeta'>>, 
'new_elem': 'effective', 
'selfVar': <function selfVar at 0x00000000029BC6D8>, 
'var': "Change made to <class '__main__.Factory'> by metaclass' __call__"} 

================================================================ 
Class' __new__ ("creates" instance objects) 
---------------------------------------------------------------- 
Bounded to object: <class '__main__.Factory'> 
Bounded object's __dict__: 
{ ..., 
'classFactory': <classmethod object at 0x00000000029B4DC8>, 
'extra': 'def printElems(self):\n print "Member new_elem: " + self.new_elem\n print "Member init_elem: " + self.init_elem\n', 
'metaVar': <bound method type.metaVar of <class '__main__.FactoryMeta'>>, 
'new_elem': 'effective', 
'selfVar': <function selfVar at 0x00000000029BC6D8>, 
'var': "Change made to <class '__main__.Factory'> by metaclass' __call__"} 
---------------------------------------------------------------- 
Parameter 'function': 
def printElems(self): 
    print "Member new_elem: " + self.new_elem 
    print "Member init_elem: " + self.init_elem 

================================================================ 
Class' __init__ (initiates instance objects) 
---------------------------------------------------------------- 
Bounded to object: <__main__.Factory object at 0x00000000029BB7B8> 
Bounded object's __dict__: 
{'classFactory': <bound method FactoryMeta.classFactory of <class '__main__.Factory'>>} 
---------------------------------------------------------------- 
Parameter 'function': 
def printElems(self): 
    print "Member new_elem: " + self.new_elem 
    print "Member init_elem: " + self.init_elem 

Il metaclasse __call__ viene chiamato prima, poi di classe __new__ e __init__.

Confrontando i membri stampati di ciascun oggetto, è possibile scoprire quando e dove sono aggiunti o modificati, proprio come ho commentato nel codice.

Ho anche eseguire i seguenti casi di test:

factory.clsVar() # Will raise exception 
Factory.clsVar() 
factory.metaVar() 
factory.selfVar() 

func2 = (
    "@classmethod\n" 
    "def printClassID(cls):\n" 
    " print \"Class ID: %02d\" % cls.class_id\n" 
    ) 
ProductClass1 = factory.classFactory("ProductClass", (object,), { 'another_func': func2 }) 

product = ProductClass1() 
product.printClassID() 
product.printElems() # Will raise exception 

ProductClass2 = Factory.classFactory("ProductClass", (Factory,), { 'another_func': "pass" }) 
ProductClass2.printClassID() # Will raise exception 
ProductClass3 = ProductClass2.classFactory("ProductClass", (object,), { 'another_func': func2 }) 

quale è possibile eseguire da soli per vedere come funziona.

Nota che ho intenzionalmente lasciato i nomi delle classi generate dinamicamente dai nomi delle variabili a cui erano assegnati. Questo è per mostrare quali nomi sono effettivamente in vigore.

Un'altra nota è che ho messo "statico" tra virgolette, che rimando al concetto come in C++ piuttosto che al decoratore Python. Tradizionalmente sono un programmatore C++, quindi mi piace ancora pensare a modo suo.